Linear Algebra Examples

Find the Norm [[2-1i],[3+1i],[3+4i]]
Step 1
The norm is the square root of the sum of squares of each element in the vector.
Step 2
Simplify.
Tap for more steps...
Step 2.1
Rewrite as .
Step 2.2
Use the formula to find the magnitude.
Step 2.3
Raise to the power of .
Step 2.4
Raise to the power of .
Step 2.5
Add and .
Step 2.6
Rewrite as .
Tap for more steps...
Step 2.6.1
Use to rewrite as .
Step 2.6.2
Apply the power rule and multiply exponents, .
Step 2.6.3
Combine and .
Step 2.6.4
Cancel the common factor of .
Tap for more steps...
Step 2.6.4.1
Cancel the common factor.
Step 2.6.4.2
Rewrite the expression.
Step 2.6.5
Evaluate the exponent.
Step 2.7
Multiply by .
Step 2.8
Use the formula to find the magnitude.
Step 2.9
Raise to the power of .
Step 2.10
One to any power is one.
Step 2.11
Add and .
Step 2.12
Rewrite as .
Tap for more steps...
Step 2.12.1
Use to rewrite as .
Step 2.12.2
Apply the power rule and multiply exponents, .
Step 2.12.3
Combine and .
Step 2.12.4
Cancel the common factor of .
Tap for more steps...
Step 2.12.4.1
Cancel the common factor.
Step 2.12.4.2
Rewrite the expression.
Step 2.12.5
Evaluate the exponent.
Step 2.13
Use the formula to find the magnitude.
Step 2.14
Raise to the power of .
Step 2.15
Raise to the power of .
Step 2.16
Add and .
Step 2.17
Rewrite as .
Step 2.18
Pull terms out from under the radical, assuming positive real numbers.
Step 2.19
Raise to the power of .
Step 2.20
Add and .
Step 2.21
Add and .
Step 2.22
Rewrite as .
Tap for more steps...
Step 2.22.1
Factor out of .
Step 2.22.2
Rewrite as .
Step 2.23
Pull terms out from under the radical.
Step 3
The result can be shown in multiple forms.
Exact Form:
Decimal Form: